Mathematics Tutorial Series

Integral Calculus \#5

Anti-derivatives

When $f^{\prime}(t)=g(t)$
we say that $f(t)$ is the anti-derivative of $g(t)$.
Examples:
$\frac{1}{3} x^{3}$ is the anti-derivative of x^{2} because $\left(\frac{1}{3} x^{3}\right)^{\prime}=x^{2}$
The function $\tan ^{-1} x$ is the anti-derivative of $\frac{1}{x^{2}+1}$ because $\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{x^{2}+1}$
Three Points:
I.

If $f^{\prime}=g$ then also $(f+c)^{\prime}=g$ for any constant c.
For example, $\left(\frac{1}{3} x^{3}+11\right)^{\prime}=x^{2}$.
Whenever you find an anti-derivative, you can add any constant to it and still have an anti-derivative of the same function
II.

The definite integral

$$
\int_{x=a}^{x=b} x^{2} d x=\left(\frac{1}{3} b^{3}\right)-\left(\frac{1}{3} a^{3}\right)
$$

doesn't change if you add a constant to the anti-derivative:

$$
\int_{x=a}^{x=b} x^{2} d x=\left(\frac{1}{3} b^{3}+c\right)-\left(\frac{1}{3} a^{3}+c\right)
$$

The constant always cancels out.
III. Notation

We write

$$
\int f(x) d x
$$

to stand for any anti-derivative of the function $f(x)$.
So:

$$
\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c
$$

Because

$$
\left(\tan ^{-1} x+c\right)^{\prime}=\frac{1}{1+x^{2}}
$$

for any constant c.

Examples:

1. Suppose $\int f(x) d x=\sin x+c$ then

$$
\int_{0}^{\pi} f(x) d x=\sin \pi-\sin 0
$$

2. Suppose $\int \log x d x=g(x)+c$ then

$$
\int_{1}^{e} \log x d x=g(e)-g(1)
$$

3. A favourite trick question: Evaluate

$$
\int_{-1}^{+1}\left(e^{x^{2}}\right)^{\prime} d x
$$

The point is that $e^{x^{2}}$ is an anti-derivative of its own derivative! So the question gives us the whole answer:

$$
\int_{-1}^{+1}\left(e^{x^{2}}\right)^{\prime} d x=e^{1^{2}}-e^{(-1)^{2}}=0
$$

